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The even-order dispersion cancellation effect based on the frequency anti-correlated photon pairs has 
 attracted much attention in the research of quantum dispersion cancellation in two-photon systems. In 
this letter, we demonstrate a four-photon quantum interferometry in which we can not only observe the 
 even-order  dispersion cancellation effect but also the odd-order cancellation. Importantly, the four-photon 
scheme can get a much better resolution than the two-photon case and help us get a better understanding of 
the  interference phenomenon in a four-photon interferometry. 
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If a beam of light, especially ultrafast pulses with large 
bandwidth, propagates through a dispersive medium, 
the temporal file gets broadened and thus can have a 
detrimental effect on the timing information in which 
we are interested. In this case, dispersion cancellation 
has always been a venerable problem in both classi-
cal and quantum fields such as clock synchronization[1–3] 
and optical coherence tomography[4,5]. 

In quantum optics, there are mainly two types of dis-
persion cancellation scenarios which are based on the 
entangled photons produced by the process of sponta-
neous parametric down-conversion (SPDC)[6]. The first 
one showed that even with only one dispersive medium 
in one arm of the Hong-Ou-Mandel (HOM) interferom-
eter, the resolution of the time interval between  photons 
was not significantly degraded due to the frequency 
anti-correlation of the conjugate photons[7,8]. The other 
one proposed by Franson[9,10] showed a nonlocal effect 
that if a pair of energy–time entangled photons propa-
gated through two distant dispersive media with equal 
dispersion coefficients but opposite in sign, the disper-
sion effect occurred in one medium can be cancelled out 
by the dispersion in the other one.

In subsequent experimental works, these two kinds 
of dispersion cancellation effects have been proved[11–14]. 
These are the well-known even-order dispersion can-
cellation effects. In 2009, Minaeva et al. showed an 
 interesting effect that both the even- and odd-order 
 dispersion cancellation effects can be observed in a 
single quantum interferometer by using frequency anti-
correlated photon pairs[15]. 

With the interesting and significant phenomena shown 
in the two-photon system, multi-photon system also 
displays its fascinating results to researchers and many 
groups make great efforts to study the multi-photon 

state, for example, the preparation of the multi-photon 
state[16–18] and the quantum effects shown in the multi-
photon system[19,20]. Compared with the two-photon sys-
tem, multi-photon entangled state has more advantages 
in the fields of quantum information and quantum com-
putation. It has been shown that multi-photon system 
can greatly improve the accuracy of precision phase mea-
surement, reaching the Heisenberg limit[21–27]. In this let-
ter, we report a theoretical dispersion cancellation scheme 
based on a four-photon source from which we can get 
a better resolution than the two-photon project. More 
 interestingly, both the even- and odd-order dispersion 
cancellation effects can be observed in this interferometer. 

Our scheme is illustrated in Fig. 1. Four-photon gen-
erated from the SPDC process are sent into a HOM 
 interferometer. Each output of the HOM interferometer, 
named C and D, provides inputs to a Mach–Zehnder 
(MZ) interferometer, respectively. Two  photons as a 
whole get into the upper MZ interferometer, whereas 
the other two as a whole get into the lower one. The 
time delay τ1 in the signal arm of the HOM interferom-
eter can be tuned continuously so that we can  control 
the state of light led into the MZ interferometer. In each 
MZ interferometer, there is a strong dispersive medium 
which provides a phase shift ϕ and a fixed time delay 
τ2 in the upper arm. When we get coincidence count 
rates from the four detectors[28,29], a special  interference 
 pattern occurs (Fig. 2).

Firstly, we assume that the four photons are pro-
duced in the form that two identical pairs of frequency  
anti-correlated bi-photon generated simultaneously from 
the SPDC process with high-power continuous pump 
laser. In that case the four-photon frequency-entangled 
states arriving at the last beam splitter (BS) of the 
HOM interferometer can be presented as 
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where ( )j j
a w�  (j = 1, 2, 3, 4) is the annihilation  operator 

in each detector field. The relations between the anni-
hilation operators in the output and the input ports of 
the MZ interferometer are
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where C and C' denote the two input ports of the up-
per MZ interferometer, and D and D' denote the lower 
one. The terms α(ω) and β(ω) are presented in the 
form of 
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For simplicity, we use terms cos[Θ(ω)] and sin[Θ(ω)] 
 instead of α(ω) and β(ω).
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With the state in Eq. (1) and the field operators in 
Eqs. (2)–(5), we can calculate the detection possibility 
as
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where ( )A B,w wΦ  is determined by the phase matching 

function with ( ) ( )
A Bp =A B, = kL ww ww w +Φ Φ ∆ , L is the 

length of the crystal, and ( ) ( ) ( )p p A A B B = k k k kw w w∆ − −  
is the phase mismatch quantity.

The positive electrical field operators at detectors, 
D1, D2, D3, and D4 are defined by
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Fig. 1. Outline of the four-photon quantum interferometry. 
Four-photons generated from the process of SPDC split into 
two pairs on the output side of the BS in the HOM interferom-
eter. The signal arm can be scanned by modulating the tun-
able time delay τ1. Each pair is sent into a MZ interferometer. 
In each MZ interferometer, there is a dispersive medium and 
a fixed time delay in one arm. Coincidence count rates can be 
measured by four detectors, D1, D2, D3, and D4.

Fig. 2. Coincidence count rate of the four detectors. There are 
mainly five interference fringes emerging when we scan the 
tunable time delay τ1. A central peak is shown in the middle 
region of τ1 ≈ 0 ps, with four side fringes shown in the region of 
τ1 ≈ ±26 and ±52 ps . (6)
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At the position of the last BS of the HOM interferom-
eter, the output modes ( )Ĉa w  and ( )D̂a w  are related 
to ( )Âa w  and ( )B̂a w  by 
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So, the coincidence counting rate can be derived:

The Taylor expansion of the phase shift ϕ(ω)[30] which 
is caused by the dispersive medium when the photons 
travel through is 
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where C0 is a constant, C1 is the first-order dispersion 
coefficient mainly determined by the inverse of the 
group velocity, and C2 is the second-order dispersion 
coefficient caused by the group velocity dispersion. The 
third-order dispersion coefficient C3 mainly contributes 
to the asymmetry owing to the distortion of the photon 
wave packets. Higher order dispersion coefficients can 
be ignored unless we use a strongly dispersive material.

For the assumptions which we declared in the SPDC 
process, if the central frequency of the down-converted 
photons is Ω0, then we have ωA = Ω0 + ω (ωB = Ω0 - ω) 
as the signal (idler) photon frequency. Then the coinci-
dence counting rate can be simplified as 
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tunable time delay τ1 after integration, while the sec-
ond term R0(τ1) is mainly responsible for the central 
peak around τ1 = 0. However, the third one Reven(τ1, τ2) 
is dependent on the term ϕ(Ω0 + ω) + ϕ(Ω0 - ω), thus 
the odd terms are cancelled and it is sensitive only to 
the even-order terms. Similarly, the fourth term Rodd is 
dependent on the term ϕ(Ω0 + ω) - ϕ(Ω0 - ω) , which 
demonstrates the well-known even-order dispersion can-
cellation effect. The last term Rs, although contains 
both the terms ϕ(Ω0 + ω) and ϕ(Ω0 - ω) in it, is only 
a small value after integration. The expansion of each 
term is shown as
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In order to make Eq. (10) more obvious to get a bet-
ter understanding, we can rewrite Eq. (10) as a linear 
superposition 

( ) ( ) ( ) ( )0 1 even 1 2 odd 1 2 1 2, , , .SR B R R R Rt t t t t t t= + + + +

 (11)
The first term B in Eq. (11) is a constant which cor-
responds to all terms that are not dependent on the 
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Our results are illustrated by a numerical simula-
tion with feasible experimental parameters. We use a  
continuous pump laser with central frequency of 406 
nm to pump a type-II degenerate BBO crystal. We 
choose strong dispersive media for the phase shift and 
the fixed time delay we set is τ2 = 26 ps, which is much 
greater than the coherence time of the photons.

From Figs. 3(a) and (b), we can observe more intui-
tively what we have discussed above. The terms R0 and 
Reven are responsible for the central peak of the coinci-
dence counting rate R, in which Reven demonstrates the 
odd-order dispersion cancellation effect. In Fig. 3(c), Rodd 
with four side fringes demonstrates the  even-order disper-
sion cancelation effect. The term Rs, which is shown in 
Fig. 3(d), mainly contributes to the  even-order dispersion 
cancellation around τ1 = ±26 ps compared with Fig. 3(c).

Let us take into account the condition that each MZ 
interferometer is fed with photons composed of a sig-
nal photon and an idler photon as a pair no matter 

which region we scan the time delay τ1 into. Although 
in this case, the two detectors after each MZ interfer-
ometer do not fire at the same time, we cannot yet 
distinguish which signal (idler) photon is sent into the 
upper (lower) arm of the MZ interferometer. Further-
more, if the two signal (idler) photons are sent into 
the MZ interferometer together as a pair, and the pairs 
all follow the same long (short) path, interference can 
also occur  because the detectors can fire at the same 
time. So small oscillation fringes which are caused by 
interference can exist at all times. These belong to the 
indistinguishability of two photons. 

In Fig. 2, when we scan into the region around τ1 ≈ 0 ps,  
we can observe a maximum peak. It is because in this 
stage, the four photons can arrive at the last BS of the 
HOM interferometer simultaneously, so we cannot tell 
which two photons enter into each MZ interferometer. 
This belongs to the indistinguishability of four pho-
tons. Besides, there are also two kinds of events that 
we cannot distinguish: 1) whether two photons which 
enter into each MZ interferometer both traverse along 
the long path or the short one and 2) whether photons 
which arrive at the last BS of each MZ interferometer 
are reflected or transmitted. This time it belongs to the 
indistinguishability of two photons.

As we continue to scan the time delay in the region of 
τ1 ≈ ±26 ps, we can consider the case that each MZ inter-
ferometer has a signal and an idler photon to enter into 
as a pair, with the signal photons which had already 
been delayed by about ±26 ps following the short path, 
whereas the idler following the long one in the MZ in-
terferometer. In this case, the four detectors can fire at 
the same time, but we cannot distinguish which signal 
(idler) photons enter into the upper (lower) MZ inter-
ferometer. Moreover, whether the photons are  reflected 
or transmitted on the last BS of each MZ interferom-
eter cannot be distinguished either. Thus interference 
can occur at this stage.

Lastly, when it reaches into the region of τ1 ~ ±52 
ps, despite the cases which we have discussed about in 
the general cases, there are two indistinguishable events 

 
        (a)    (b)

 
        (c)    (d)

Fig. 3. Coincidence counting rate of (a) R0 is the main 
central peak of the total coincidence counting rate and  
(b) Reven is caused by the odd-order dispersion cancellation 
shown in the region of τ1 ≈ 0 ps, (c) Rodd, four asymmetric 
fringes are shown in the region of τ1 ≈ ±26 and ±52 ps, which 
are caused by the even-order dispersion cancellation, and (d) 
Rs mainly contributes to the even-order dispersion cancellation 
around (τ1 ≈ ±26 ps,). 

Fig. 4. Comparison of the central peak of the coincidence 
counting rate between the  two-photon project and the  
four-photon one. The red curve represents the two-photon case, 
whereas the blue one represents the four-photon situation.
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that the two detectors fire with a time interval of 26 ps 
taking place: 1) each MZ interferometer is fed with a 
signal photon and an idler photon as a pair, the signal 
photons follow the short path, whereas the idler pho-
tons follow the long one and 2) the two photons which 
enter into each MZ interferometer are both the signal 
(idler) photons. And in these events, we cannot tell 
which two photons enter into each MZ interferometer. 
Thus, this indistinguishability can lead to interference 
with a small possibility.

From the above discussion, we get a better understand-
ing of the interference effect happened in the four-photon 
interferometer through the phenomena that even- and 
odd-order dispersion cancellation can show up in different 
regions when we modulate the time delay continuously. 

Then we compare our four-photon scheme with the 
two-photon which has only one MZ interferometer in 
one of the HOM interferometer outputs. We find that 
in our scheme the full-width at half-maximum of the 
central peak is about 1/2 narrower than the  two-photon 
case (Fig. 4). It is known that in quantum optics, an 
ensemble of photons is treated as a Bose condensate 
with a de Broglie wavelength given by λ0/N 

[31], which 
has already been experimentally confirmed[32,33], where λ0 
is the wavelength and N is the average number of pho-
tons. This is an implication of the phase shift NΔφ of 
the four photons which is induced by the path length, 
where Δφ is the phase modulation of a single photon. 
Thus, the four-photon scheme gets a better resolution 
than the two-photon one. 

In conclusion, we theoretically demonstrate a dis-
persion cancellation scheme based on the four-photon 
quantum interference. The interesting thing of the 
scheme is that it can not only show the even- and 
 odd-order dispersion cancellation effects, which can 
help to get a better understanding of the interference 
effects shown in the four-photon system; but also get 
a much narrower width of the interference fringes, 
from which we can get a better resolution than the  
state-of-the-art two-photon interferometry. Although 
there is actual limitation due to the low coincidence 
count rates, it can eventually overcome with the next 
generation of entangled photon sources and detec-
tors. It is expected that the scheme can extend the 
 application of multi-photon system such as in quan-
tum metrology. 

This work was supported by the National Natural Sci-
ence Foundation of China under Grant Nos. 61275122, 
11105205, and 61222504.
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